JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

IsoNN: Isomorphic Neural Network for Brain
Graph Representation Learning and Classification

Lin Meng, Student Member, IEEE and Jiawei Zhang

Abstract—The studies of brain graphs have been an interesting
topic in the neuroimaging and healthcare. However, it is hard
to apply traditional deep learning models like CNN on the
brain graph data due to the ‘node-orderless’ property. Normally,
adjacency matrices will cast an artificial and random node-
order on the graphs, which renders the performance of deep
models on graph classification tasks extremely erratic, and the
representations learned by such models lack clear interpretability.
To eliminate the unnecessary node-order constraint, we propose a
novel model named Isomorphic Neural Network (ISONN), which
learns the brain graph representations by extracting its isomor-
phic features via the subgraph matching between input graph and
templates. ISONN has two main components: graph isomorphic
feature extraction component and classification component. The
graph isomorphic feature extraction component utilizes a set of
subgraph templates as the kernel variables to learn the possible
subgraph patterns existing in the input graph and then computes
the isomorphic features. A set of permutation matrices is used in
the component to break the node-order brought by the matrix
representation. Three fully-connected layers are used as the
classification component in ISONN. Extensive experiments are
conducted on real-world brain graph datasets, the experimental
results can demonstrate the effectiveness of ISONN.

Index Terms—Representation Learning, Graph Neural Net-
work; Brain Graph

I. INTRODUCTION

In the fields of neuroscience and healthcare, the analyses of
the human brain have been always a focus of researchers [1]-
[3]. Functional magnetic resonance imaging (fMRI) and struc-
tural diffusion tensor imaging (DTI) have been two of many
techniques for analyzing human brains. In recent years, many
brain image works [1], [2], [4] apply graph theory to analyze
the brain image data. The brain graph can be obtained by
computing pairwise correlations between fMRI or DTI time
series of different regions of interests (ROIs) [3]. In this paper,
we will focus on the brain graph classification for brain-related
diseases, e.g., HIV infection, attention-deficit/hyperactivity
disorder (ADHD), and bipolar disorder (BP), based on the
constructed brain graphs.

To address the aforementioned task, many graph learning
methods can be applied. One way to estimate the usefulness
of subgraph features is feature evaluation criteria based on
both labeled and unlabeled graphs [5]. Some other works also
proposed to design a pattern exploration approach based on
pattern co-occurrence and build the classification model [6]

L. Meng is with the Department of Computer Science, Florida State
University, Tallahassee FL, 32303, USA (email: lin@ifmlab.org).

J. Zhang is with the Department of Computer Science, University of
California, Davis CA, 95616, USA (email: jiawei@ifmlab.org).

Manuscript received April 19, 2021; revised August 16, 2021.

or develop a boosting algorithm [7]. However, such works
based on BFS or DFS cannot avoid computing a large num-
ber of possible subgraphs, which causes high computational
complexity though the explicit subgraphs are maintained.
Recently, deep learning models are also widely used to solve
the graph-oriented problems. Although some deep models like
MPNN [8] and GCN [9] learn implicit structural features, the
explicit structural information cannot be maintained for further
research. Besides, most existing works on graph classification
use the aggregation of the node features in graphs as the graph
representation [10], [11], but simply doing aggregation on the
whole graph cannot capture the substructure precisely. While
there are other models can capture the subgraphs, they often
need more complex computation and mechanism [12], [13] or
need additional node labels to find the subgraph strcuture [14],
[15].

However, we should notice that when we deal with the
graph-structured data to explore substructures, different node-
orders will result in very different adjacency matrix represen-
tations for most existing deep models (e.g., CNN) which take
the adjacency matrices as input if there is no other information
on graphs. Therefore, compared with the original graph, the
matrix naturally poses a redundant constraint on the graph
node-order. Such a node-order is usually unnecessary and
manually defined. The different graph matrix representations
brought by the node-order differences may render the learning
performance of the existing models to be extremely erratic.
Formally, we summarize the encountered challenges in the
detecting substructures existing in brain graphs as follows:

« Explicit useful subgraph extraction. The existing works
have proposed many discriminative models to discover
useful subgraphs for graph classification, and most of
them require manual efforts. Nevertheless, how to select
the contributing subgraphs automatically without any
additional manual involvement is a challenging problem.

o Brain graph representation learning. Representing
graphs in the vector space is an important task since
it facilitates the storage, parallelism and the usage of
machine learning models for the graph data. Extensive
works have been done on node representations [11], [16]—
[18], whereas learning the representation of the whole
graph with clear interpretability is still an open problem
requiring more explorations.

o Node-order elimination for subgraphs. Nodes in graphs
are orderless, whereas the matrix representations of
graphs cast an unnecessary order on nodes, which also
renders the features extracted with the existing learning

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

models, e.g., CNN, to be useless for the graphs. For
subgraphs, this problem also exists. Thus, how to break
such a node-order constraint for subgraphs is challenging.

« Efficient matching for large subgraphs. To break the
node-order, we will try all possible node permutations to
find the best permutation for a subgraph. Clearly, trying
all possible permutations is a combinatorial explosion
problem, which is extremely time-consuming for finding
large subgraph templates. The problem shows how to
accelerate the proposed model for large subgraphs that
also need to be solved.

In this paper, we propose a novel model, namely Isomorphic
Neural Network (ISONN) and its variant, to address the
aforementioned challenges in the brain graph representation
learning and classification problem. ISONN is composed of
two components: the graph isomorphic feature extraction com-
ponent and the classification component, aiming at learning
isomorphic features and classifying graph instances, respec-
tively. In the graph isomorphic feature extraction component,
ISONN automatically learns a group of subgraph templates
of useful patterns from the input graph. ISONN makes use
of a set of permutation matrices, which act as the node
isomorphism mappings between the templates and the input
graph. With the potential isomorphic features learned by all
the permutation matrices and the templates, ISONN adopts one
min-pooling layer to find the best node permutation for each
template and one softmax layer to normalize and fuse all sub-
graph features learned by different kernels, respectively. Such
features learned by different kernels will be fused together
and fed as the input for the classification component. [ISONN
further adopts three fully-connected layers as the classification
component to project the graph instances to their labels.
Moreover, to accelerate the proposed model when dealing with
large subgraphs, we also propose the fast version and the deep
model of ISONN to guarantee efficiency.

II. TERMINOLOGY AND PROBLEM DEFINITION

In this section, we will define the notations and the termi-
nologies used in this paper and give the formulation for the
brain graph classification problem.

A. Notations

In the following sections, we will use lower case letters
like = to denote scalars, lower case bold letters (e.g. x)
to represent vectors, bold-face capital letters (e.g. X) to
show the matrices. For tensors or sets, capital calligraphic
letters are used to denote them. We use x; to represent the
i-th element in x. Given a matrix X, we use X(i,7) to
express the element in ¢-th row and j-th column. For ¢-th row
vector and j-th column vector, we use X(¢,:) and X(:,)
to denote respectively. Moreover, notations x' and XT
denote the transpose of vector x and matrix X respectively.
Besides, the F-norm of matrix X can be represented as

1
Xl = (325, 1 X412

B. Problem Formulation

DEFINITION /: (Brain Graph): Formally, a brain graph can
be represented as weighted graph G = (V, £), where the sets
V and £ denote the nodes and links involved in the graph,
respectively. Each node 7 € V denotes a region of interests
(ROI) and each edge e;; = (4,j,w;;) € £ represents the
connectivity degree between two node ¢ and j is w;.

Now, we can define our problem with the brain graph defina-
tion.

DEFINITION 2: Problem Definition: Formally, given a brain

graph set G = {G1,Ga,--+ ,G,} with a small number of
labeled brain graph instances, the graph classification problem
aims at learning a mapping, i.e., f : G —), to project
each brain graph instance into a pre-defined label space
Y ={+1,-1}
In this paper, we will take the graph binary classification as
an example to illustrate the problem setting for ISONN. A
simple extension of the model can be applied to handle more
complicated learning scenarios with multi-class or multi-label
as well.

III. PROPOSED METHOD

The overall architecture of ISONN is shown in Figure 1.
The ISONN framework includes two main components: graph
isomorphic feature extraction component and classification
component. The graph isomorphic feature extraction compo-
nent includes a graph isomorphic layer, a min-pooling layer
as well as a softmax layer and the classification component
is composed by three fully-connected layers. They will be
discussed in detail in the following subsections.

A. Graph Isomorphic Feature Extraction Component

Graph isomorphic feature extraction component targets at
learning the graph features. To achieve that objective, ISONN
adopts an automatic feature extraction strategy for graph
representation learning. In ISONN, one graph isomorphic
feature extraction component involves three layers: the graph
isomorphic layer, the min-pooling layer and the softmax
layer. In addition, we can further construct a deep graph
isomorphic neural network by applying multiple isomorphic
feature extraction components on top of each other, i.e., apply
the combination of “graph isomorphic layer, min pooling
layer, softmax layer” several times. For the second and latter
components, they will be used on every feature matrix learned
by the combination of channels of all former components.

1) Graph Isomorphic Layer: Graph isomorphic layer is
the first effective layer in deep learning that handles the
node-order restriction in graph representations. Assume we
have a graph G = {V, €}, and its adjacency matrix to be
A ¢ RYIXVI and each element A(i,j) = w;;. In order
to find the existence of specific subgraph patterns in the
input graph, ISONN matches the input graph with a set of
subgraph templates. Each template is denoted as a kernel
variable K; € RF*¥ i € {1,2,--- ,c}. Here, k denotes the
node number in subgraphs and c is the channel number (i.e.,
total template count). Meanwhile, to match one template with
regions in the input graph (i.e., sub-matrices in A), we use a

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

Diagnosis
Result

Input Isomorphic Features

Sub-graph

Matching
——> 00010 -°*

Sub-graph Templates
ol1/o \ s
/ @3 .

Healthy Brain

@/0 — —

\]| |
Graph Isomorphic Feature Extraction Classification

. Min-pooling Softmax Fully Connected
Graph Isomorphic Layer Layer Layer Layers
o -
R :
SE - o o
iy O O
"‘11.. - o o
-".'I.'._L-".—'T’ :_.:_.
Rt J g -
A . o O Y
\ O O
v [Py — O
B — ©)
N pl —

Fig. 1: IsoNN Framework Architecture. (The left subplot provides the outline of the proposed framework, including the
graph isomorphic feature extraction component and the classification component respectively. Meanwhile, the right subplot
illustrates the detailed architecture of the proposed framework, where the graph isomorphic features are extracted with the
graph isomorphic layer, min-pooling layer and softmax layer, and the graphs are further classified with three fully-connected

layers.)

set of permutation matrices, which map both rows and columns
of the kernel variable to the subgraphs effectively. The permu-
tation matrix can be represented as P € {0, 1}%** that shares
the same dimension with the kernel variable. Therefore, given
a kernel K; and a sub-matrix M, ;) € R¥** in A (ie., a
region in the input graph G and s,t € {1,2,--- , (|V|—k+1)}
denotes a starting index pair in A), there may exist k! different
such permutation matrices. The optimal should be the matrix
P* that minimizes the following term.

P* :argminHPKiPT - M, t)Hi” (1)

PeP ’

where P = {P1,Ps,--- P} covers all the potential per-
mutation matrices. Formally, the isomorphic feature extracted
based on the kernel K; for the regional sub-matrix M, ;) in
A can be represented as

[P K (P*)T — M|

Zi,(s,t) =
. 2
= min{|[PKP" — M p[[ptper @
= min(ii)(sﬁt)(l D k),
where vector Z; (., contains entry Z; (s (j) =

|P;KiP] M|, Vi € {1,2,---,kl} denoting
the isomorphic features computed by the j-th permutation
matrix P; € P.

As indicated by the Figure 1, ISONN computes the fi-
nal isomorphic features for the kernel variable K; via two
steps: (1) computing all the potential isomorphic features
via different permutation matrices with the graph isomorphic
layer, and (2) identifying and fusing the optimal features with
the min-pooling layer and softmax layer to be introduced
as follows. By shifting one kernel matrix K; on regional
sub-matrices, ISONN extracts the isomorphic features on the
matrix A, which can be denoted as a 3-way tensor Z, €
RFX(VI=k+1)x(IVI=k+1) where Z;(1 : k! s,t) = Zi(s,4)(1:
k!). In a similar way, we can also compute the isomorphic
feature tensors based on the other kernels, which can be
denoted as Zq, Zo, -+, Z. respectively.

2) Min-pooling Layer: Given the tensor Z; computed by
K, in the graph isomorphic layer, ISONN will identify the
optimal permutation matrices via the min-pooling layer. For-
mally, we can represent results of the optimal permutation
selection with Z; as matrix Z;:

Z;(s,t) = min{Z;(1: k!, s,t)}. 3)
The min-pooling layer learns the optimal matrix Z; for kernel
K, along the first dimension (i.e., the dimension indexed by
different permutation matrices), which can effectively identify
the isomorphic features created by the optimal permutation
matrices. For the remaining kernel matrices, we can also
achieve their corresponding graph isomorphic feature matrices
as Zy, Zo, ---, Z. respectively.

3) Softmax Layer: Based on the above descriptions, an
optimal matching between the subgraph templates with the
input graph will lead to a very small isomorphic feature, e.g.,
a value approaching to 0. If we feed the small features into the
classification component, the useful information will vanish
and the relative useless information (i.e., features learned by
the subgraphs dismatch the kernels) dominates the learning
feature vector in the end. Meanwhile, the feature values
computed in Equation (3) can also be in different scales for
different kernels. To effectively normalize these features and
determine the most similar kernel for a subgraph, we propose
to apply the softmax function to matrices Zi, Zo, ---, Z,
across all ¢ kernels. Compared with the raw features, e.g., Z;,
softmax as a non-linear mapping can also effectively highlight
the useful features in Z; by rescaling them to relatively larger
values especially compared with the useless ones. Formally,
we can represent the fused graph isomorphic features after
rescaling by all the kernels as a 3-way tensor Q, where slices
along first dimension can be denoted as:

Qi,::) = —2Z; 4)

exp(Q(i, s, 1))
(e (06, 5,1)))

i, s,t) =)

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

1-layer IsoNN with 6 sub-graph kernels (kernel size: 12)

2-layer IsoNN

oo &

P

E5A

aaERn
6

layer 1 layer 2
(2 kernels, size 3) (3 kernels, size 4)

/N

N,

o))

Fig. 2: An Ilustration of Deep Architecture of ISONN. (The plot provides possible subgraph templates for both one isomorphic
layer with kernel size 12 and two isomorphic layers with kernel size 3 and 4, showing the similar representation power of
single layer with large kernel size and the multiple layers with small kernel sizes.)

However, if ¢ = 1, then the softmax normalization will lead
to a constant feature matrix (i.e., a constant matrix full of 1).
To avoid it, we propose to normalize the feature matrix within
itself. So the final features will be Q(1,:,:) = softmax(—Z,).

B. Classification Component

After the isomorphic feature tensor Q is obtained, we
feed it into a classification component. Let q denote the
flattened vector representation of feature tensor Q whose value
are sorted in a descending order so as to handle the node
orderless property for the input graph. We pass it to three fully-
connected layers to get the predicted label vector ¥. For the
graph binary classification, suppose we have the ground truth
y = (y{,y§) and the predicted label vector y9 = (97, 93)
for the sample g from the training batch set B. We use
cross-entropy as the loss function in ISONN. Formally, the
fully-connected (FC) layers and the objective function can be
represented as follows respectively:

di = o(Wiq+by),
FC Layers: dy = o0(Wadj + ba), (6)
y = o(Wsds+bs),

2

Objective Function: £ = — Z Z y7 log g7, 7
geB j=1

where W; and b, represent the weights and biases in ¢-th layer

respectively for i € {1,2,3}. The o denotes the adopted the

relu activation function. To train the proposed model, we adopt

the back propagation algorithm to learn both the subgraph

templates and the other involved variables.

C. More Discussions on Graph Isomorphic Feature Extraction
in ISONN

Before introducing the empirical experiments to test the
effectiveness of ISONN, we would like to provide more
discussions about the computation time complexity of the
graph isomorphic feature extraction component involved in
ISONN. Formally, given the input graph G with n = |V|

nodes, by shifting the kernel variables (of size k x k) among
the dimensions of the corresponding graph adjacency matrix,
we will be able to obtain (n — k + 1)? regional sub-matrices
(or O(n?) regional sub-matrices for notation simplicity). Here,
we assume ISONN has only one isomorphic layer involving
c different kernels. In the forward propagation, the introduced
time cost in computing the graph isomorphic features can
be denoted as O(ck!k3n?), where term k! is introduced in
enumerating all the potential permutation matrices and k3
corresponds to the matrix multiplication time cost.

According to the notation, we observe that n is fixed
for the input graph. Once the kernel channel number c is
decided, the time cost notation will be mainly dominated by
k. To lower down the above time complexity notation, in
this part, we propose to further improve ISONN from two
perspectives: (1) compute the optimal permutation matrix in
a faster manner, and (2) use deeper model architectures with
small-sized kernels.

1) Fast Permutation Matrix Computation: Instead of enu-
merating all the permutation matrices in the graph isomorphic
feature extraction as indicated by Equations (2)-(3), here we
introduce a fast way to compute the optimal permutation
matrix for the provided kernel variable matrix, e.g., K;, and
input regional sub-matrix, M,), directly according to the
following theorem.

THEOREM [: Formally, let the kernel variable K; and the
input regional sub-matrix M, ;) be k x k real symmetric
matrices with k distinct eigenvalues oy > ag > -+ > ay
and B; > 2 > --- > B, respectively, and their eigendecom-
position be represented by

_ T _ T
Ki = UKiAKiUK,;7 and M(s,t) = UM(s,t)AM(s,t)UM(S,t)
where Uk, and Uy, are orthogonal matrices of eigenvec-

tors and Ak, = diag(a;), A, ,, = diag(B;). The minimum
of |PK;PT — M, ,|? is attained for the following P’s:
P* = Uy, , SUg, ©))

where S € S = {diag(s1,s2, - ,sk)[s;i=1or —1}.

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

Before giving the proof of Theorem 1, we need to introduce
Lemma 1 first.

LEMMA [: If A and B are Hermitian matrices with eigen-
values oy > ag > -+ > ay and B > By > -0 > B3,
respectively, then ||A — BJ|| > Y7 | (o — ;)2
Based on Lemma 1, we can derive the proof of Theorem 1 as
follows.

PROOF I: From Lemma 1, Equation 10 holds for any
orthogonal matrix R since the eigenvalues of RK;R " are
the same as those of K;.

n
IRK;RT — M, > > Z(%‘ - B;)°

j=1

(10)

On the other hand, if we use P in Equation (9), we have

HPKz‘PT -M s,t)||2

= ||UM(”)SUKiUKiAKiU}—QUKiSU;[(SJ)
- UM(s,t)AM(s,t)U;\r4(s)t) H2

= [Uns,, . (SAKS — A, U, 1P

= ||SAK1'S - AM(s,t)HQ

= |[Ak, — AM(s,mHQ

=510y = B;)?

where we use the equations that |[|[UX|| = |[UXT|| = [|X]|
for any orthogonal matrix U and SAg,S = S?Ag, = Ak,
since S and A, are both orthogonal matrices and S2=1.
Moreover, it is clear that

tr(P' Uy, SUf,) <tr (P [Up ,|[Ug[) (D

because of the elements in S are either —1 or +1. Also, since
each row vector of U Ma and Ug;, is unit vector, thus we
can have

tr(PT|Un, ,[|[Ug,|) <n (12)

If there exists a perfect permutaion matrix, P*, then there
exists such S*, s.t.

tr(P* " Uy, ,S*"Ug,) =tx(P*"P*)=n (13)

Thus, based on Equation (11), Equation (12) and Equa-
tion (13), we can get

tr(P* " [Un, , [|Uf,|) < . (14)

This means that P maximizes tr(PT|UM(SYt> HURD There-
fore, when K; and M, ;) are isomorphic, the optimal per-
mutation matrix can be obtained as a permutation matrix
P* which maximizes the trace in Eq.14. Therefore, we take
P = \UM“’”HUIT{J directly as the approximated optimal
permutation matrix instead, which together with the corre-
sponding optimal feature 2; (s ;) can be denoted as follows:

P* = [Uwm,, ,[[Ug,| and 2 = [PKP*) M|
15)

where | - | denotes the absolute value operator and

|UM(S‘0||UL| > Un, SU; hold for VS € S.

By replacing Equations (2)-(3) with Equation (15), we can
compute the optimal graph isomorphic feature for the kernel
K, and input regional sub-matrix M, ;) with a much lower
time cost. Furthermore, since the eigendecomposition time

complexity of a k x k matrix is O(k3), based on the above
theorem, we will be able to lower down the total time cost
in graph isomorphic feature extraction to O(ck3n?), which
can be optimized with the method introduced in the following
subsection.

2) Deep Graph Isomorphic Feature Extraction: Since
graph isomorphic layer is the main functional layer, we simply
use a multi-layer for short to denote the multiple graph
isomorphic feature extraction components (i.e., deep model).
To ensure the deep model can still work well, we add residual
module into the deep model [19]. Here, we will illustrate the
advantages of deep ISONN model with small-sized kernels
compared against shallow ISONN model with large kernels.
In Figure 2, we provide an example two ISONN models with
different model architectures

« the left model has one single layer and 6 kernels, where

the kernel size £ = 12;
« the right model has two layers: layer 1 involves 2 kernels
of size 3, and layer 2 involves 3 kernels of size 4.

By comparing these two different models, we observe that they
have identical representation learning capacity. However, the
time cost in feature extraction introduced by the left model is
much higher than that introduced by the right model, which
can be denoted as O(6(12%)n?) and O(2(3*)n? + 3(43)n?),
respectively.

Therefore, for the ISONN model, we tend to use small-sized
kernels. Formally, according to the fast method provided in
the previous part, given a 1-layer ISONN model with c large
kernels of size k, its graph isomorphic feature extraction time
complexity can be denoted as O(ck®n?). Inspired by Figure 2,
without affecting the representation capacity, such a model can
be replaced by a max{[log5], [mg?;j }-layers deep ISONN
model instead, where each layer involves 2 kernels of size 3.
The graph isomorphic feature extraction time complexity of

the deep model will be O((max{[log5], [loglgf—‘ })-2-33n?)
(or O ((max{ [log°], [logk—‘ PE n2) for simplicity).

IV. EXPERIMENTS

To evaluate the performance of ISONN, we will talk about
the experimental settings as well as four brain graph datasets.
Then, we will discuss the experimental results with parameter
analyses on kernel size , channel number and layer number.
Finally, we will study the time complexity and provide a case
study for breaking the node order.

A. Experimental Settings

In this subsection, we will use four real-world benchmark
datasets: HIV-fMRI [20], HIV-DTI [20], BP-fMRI [21], and
ADHD-fMRI'. Both HIV-fMRI and HIV-DTI have 56 positive
instances and 21 negative instances. Also, graph instances in
both of them are represented as 90 x 90 matrices [20]. BP-
fMRI has 52 positive and 45 negative instances and each
instance is presented by an 82 x 82 matrix [21]. ADHD-
fMRI dataset is a public dataset with size 116 x 116 per brain

Uhttp://neurobureau.projects.nitrc.org/ADHD200

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

TABLE I: Classification Results of the Comparison Methods.

Methods
Dataset Metric Freq AE CNN SDBN WL GCN GIN IsoNN-fast ISONN
Accuracy 543 469 593 665 442 583 525 73.9 76.5
HIV-fMRI FI 582 355 663 667 212 564 356 70.7 75.9
HIVADTT Accuracy 646 624 543 659 471 577 551 60.1 67.5
FI 639 00 557 656 484 544 536 61.9 72.3
BP-fMRI Accuracy 56.8 53.6 54.6 64.8 562 60.7 454 62.3 64.9
FI 576 695 528 637 588 612 423 632 69.7
Accuracy 55.1 496 569 503 521 548 530 62.4 64.1
ADHD-fMRI Fl 554 505 572 668 452 598 557 62.3 65.6
0.7 - k=2 - k=2 07 - k=2 - k=2
/3 k=3 0.5 /3 k=3 /= k=3 0.6 /3 k=3
06 1 k=4 1 k=4 06 3 k=4 =3 k=4
0s 3 k=5 0.4 3 k=5 05 3 k=5 05 3 k=5
" ey Kernel Size Comparison ” pecuaey Kernel Size Comparison * hecumcy Kernel Size Comparison . " e Kernel Size Comparison
(a) HIV-fMRI (b) HIV-DTI (¢) BP-fMRI (d) ADHD-fMRI

Fig. 3: Effectiveness of Different k

graph and has 776 brain graphs in total and in which 491
are negative. With three small datasets and one large dataset,
we first introduce the comparison methods used in this paper
and then talk about the experimental setups and the adopted
evaluation metrics in detail.

1) Comparison Methods:

e ISONN & ISONN-fast : The proposed method ISONN
uses a set of template variables as well as the permu-
tation matrices to extract the isomorphic features and
feed these features to the classification component. The
variant model named ISONN-fast uses the Equation (15)
to compute the optimal permutation matrices and other
settings remain unchanged.

o Freq: The method uses the top-k frequent subgraphs as
its features. This is also an unsupervised feature selection
method based on frequency.

o« AE: We use the autoencoder model (AE) [22] to get
the features of graphs without label information. It is
an unsupervised learning method, which learns the latent
representations of connections in the brain graphs without
considering the structural information.

e CNN: It is the convolutional model [23] learns the
structural information within small regions of the whole
image. While the graph is different from the image due
to its ‘node-orderless’ property.

o SDBN: A model proposed in [12], which reorders the
nodes in the brain graph first and then feeds the reordered
graph into an augmented CNN. In this way, it not only
learns the structural information but also tries to minimize
the effect of the order constraint.

e WL: WL [15] is a classic algorithm to do the graph
isomorphism test. Since brain graphs do not have node or
edge labels, we simply assign each node different number

as their node labels.

o GCN?: GCN is a classic graph neural network model
proposed in [9]. It uses the adjacent matrix to learn the
implicit structure information in graphs. However, GCN
learns node embeddings instead of graph embedding.
Here, to obtain the graph representation, we simply
concatenate all node features.

o GIN?: GIN is proposed in [10] recently. GIN updates
the node features via neighboring nodes and aggregate
the node features as the graph features.

2) Experimental Setup and Evaluation Metrics: In our
experiments, to make the results more reliable, we partition
the datasets into 3 folds and then set the ratio of train/test
according to 2 : 1, where two folds are treated as the training
data and the remaining one is the testing data. Here, for
unsupervised methods, we use SVM classifier. For supervised
models, we will use MLP classifier with three fully connected
layers with 1024, 128, 2 neurons, respectively. We select top-
100 features for Freq as stated in [12]. For Auto-encoder, we
apply the two-layer encoder and two-layer decoder with 1024
and 128 neurons, respectively. For the CNN, we apply the one
convolutional layer with the size 5x5x 50, a max-pooling layer
with kernel size 2 x 2, one gating relu layer as an activation
layer. For the SDBN, we set the architecture as follows: we
use two layers of the “convolution layer + max-pooling layer
+ activation layer ~ and concatenate a fully connected layer
with 100 neurons as well as an activation layer, where the
parameters are the same as those in CNN. We also set the
dropout rate in SDBN being 0.5 to avoid overfitting. For WL
kernel, we first compute the pairwise similarity matrices for
both training and testing sets and then use feed the training

2 To make fair comparison, we use the adjacency matrix as the feature
matrix, where each row is the feature vector for corresponding node.

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

3 c=1 = c=1
s = =2 06 =2
- =3 [r—_——
- 05 -
05 - =4 - c=4
04
0.4
03
03
02 02
01 01
0.0 0.
Accuracy F1 Accuracy y F1
Channel Number Comparison Channel Number Comparison
(c) BP-fMRI (d) ADHD-fMRI

Fig. 4: Effectiveness of Different c

3 =1 07 3 =1
07 = c=2 = c=2
= =3 06 = =3
06 - =4 - =4
05
05
0.4 04
03 03
0.2 0.2
0.1 0.1
0.0 0.0
Accuracy F1 Accuracy F1
Channel Number Comparison Channel Number Comparison
(a) HIV-fMRI (b) HIV-DTI
066 . 1-Layer

064 == 2-Layer
== 3-Layer
0.62 == 4-Layer

Loss

Y Layer Number Comparison 0 0
Epoch Number

Fig. 5: Study on Layers Fig. 6: Convergence

similarity matrix to train the SVM classifier. We use one graph
convolutional layer to learn the node features and concatenate
the node features as graph features. We follow the setting
in [10] to do GIN-0. Here, to make a fair comparison, we
will use the adjacency matrices as features (i.e., no node label
information) for WL, GCN, and GIN. In the experiments, we
set the kernel size k in the isomorphic layer for three datasets
as 3, 4, 3, 3, respectively, and then set the parameters in
classification component the same as those in MLP classifier.
To evaluate the performance, we use accuracy and F1 as the
metrics. In this experiment, we adopt Adam optimizer and
the set the learning rate n = 0.001, and run the model on
Dell PowerEdge T630 Server with 2 20-core Intel CPUs and
256GB memory. Finally we will report the average results on
balanced datasets.

B. Experimental Results

In this section, we investigate the effectiveness of the
learned subgraph-based graph feature representations for
graphs. We adopt one isomorphic layer where the kernel
size k = 3 and channel number ¢ = 3 for HIV-fMRI, one
isomorphic layer with (k = 4,¢ = 2), (k = 3,¢ = 1),
(k = 3,¢c = 4) for the HIV-DTI, BP-fMRI and ADHD-
fMRI respectively. The results are shown in Table 1. From
that table, we can observe that ISONN outperforms all other
baseline methods on these all datasets. Compared with Freq,
the proposed method achieves a better performance without
searching for all possible subgraphs manually. AE has almost
the worst performance among all comparison methods. This
is because the features learned from AE do not contain any
structural information. For HIV-DTI, AE gets O in F1. This is
because the dataset contains too many zeros, which makes the
AE learn trivial features. CNN performs better than AE but
still worse than ISONN. The reason can be that it learns some
structural information but fails to break the node order within

subgraphs. One possible reason for WL gets bad results is the
brain graphs do not have a useful pattern according to node
labels. GCN performs better than GIN but worse than ISONN,
showing that GCN can learn some structural information with-
out node labels and node features. Comparing ISONN with
AE, ISONN achieves better results. This means the structural
information is more important than only connectivity infor-
mation for the classification problem. If compared with CNN,
the results also show the contribution of breaking the node-
order in learning the subgraph templates. Similar to SDBN,
ISONN also finds the features from subgraphs, but ISONN
gets better performance with more concise architecture. While
the SDBN has better F1 on ADHD-fMRI, its accuracy is
low, thus the high F1 cannot be treated as a reliable result.
Contrasting with GCN and GIN, ISONN can maintain the
explicit subgraph structures in graph representations, while the
GCN and GIN using the aggregation of the neighboring node
features only learn the implicit structural infomation. Since
the approximation on P impairs the performances, we choose
different parameters for HIV-fMRI and HIV-DTI, which are
(k=4,c=4) and (k = 4, c = 3), respectively. Generally, the
performances of ISONN-fast are not the best for four datasets,
but the performances are close to ISONN.

C. Convergence Analysis

The Figure 6 shows the convergence of ISONN, where the
x-axis denotes the epoch number and the y-axis is the training
loss, respectively. It illustrates that the proposed method can
achieve a stable optimal solution within 50 iterations, which
shows our method can converge with few epochs.

D. Parameter Analysis

To further study the proposed method, we will discuss the
effects of different kernel size and channel number in ISONN.
o Kernel Size: We show the effectiveness of different k&
in Figure 3. Based on the previous statement, parameter
k can affect the final results since it controls the size of
learned subgraph templates. To investigate the best kernel
size for each dataset, we fix the channel number ¢ =
1. As Figure 3 shows, different datasets have different
appropriate kernel sizes. The best kernel sizes are 3, 4,
4, 3, for the three datasets, respectively.
e Channel Number: We also study the effectiveness of
multiple channels (i.e., multiple templates in one layer).
To discuss how the channel number influences the results,

JOURNAL OF IKTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

121 =@ ISONN(HIV-fMRI) Pal 71 =@~ ISONN(HIV-fMRI) A - IsoNN-fast n
-B- IsONN(HIV-DTI) / -B- IsONN(HIV-DTI) =27 5001 —m- ISONN /)
1o)== 1sONN(BP-fMRI) / 6] == ISONN(BP-fMRI) R /
/ Vi 400 /
< / = 2 » = /
£ s -, = /
E° ,l £ */’/, Pid £ 300 /
o / n @ PaliVid PRe 7] /
£ ’ ‘e E 4 -7 m . £ /
[= /7 Paa = Pid - Pid i= 200 1
77 » -) Vi
_,J 7 3 .,»’ - /
N e i .,,*’ 100 d----9
o -———" , PPtle o————@——=5
__________ =
A e ----"" o e o EI -~
2 3 4 5 1 2 3 4 2 3 a4 5 6
k [« k
(a) Different k (b) Different ¢ (c) ISONN & ISONN-fast

Fig. 7: Time Complexity Study

Features with Permutation 1 Features with Permutation 2

-02
-0.4 45
-0.6 4.0
-0.8

35
-10

3.0
-12
-14 25

(a) One Kernel under 6 Permuations (b) Features with Permutation 1 (c) Features with Permutation 2

Features with Permutation 3 Features with Permutation 5

45
4.0
35
3.0
25

(d) Features with Permutation 3 (e) Features with Permutation 5 (f) Features with Optimal Permutation

Features with Optimal Permutation

Fig. 8: Case Study on Breaking the Node Order. (Figure 8b-8e shows learned features under 4 permutations of one kernel in
Figure 8a and the 4 features learned under the 4 permutations are totally different. Compared with features obtained by the
optimal permutation shown in Figure 8f, features learned by a fixed permutation (i.e., node order) cannot discover the same
subgraphs in a real graph.)

we choose the kernel size for each dataset (i.e., 3, 4,
3, 3 respectively). From all sub-figures in Figure 4, we
can see that the differences among the different channel
numbers by using only one isomorphic layer. As shown
in Figure 4, ISONN achieves the best results by ¢ =
3,2,1,4, respectively, which means the increase of the
channel number can improve the performance, but more
channels do not necessarily lead to better results. The
reason could be the more templates we use, the more
complex our model would be, thus it loses the model
generalization.

Layer Number: Figure 5 shows the performance with
different layers on ADHD-fMRI dataset. From the figure,
we can see that when we apply more layers, the accuracy

and F1 slightly increase as the number of layers goes up
to 3. However, the performance of 4 layers goes down. It
indicates the big subgraph can be beneficial but also has
the probability of being overfitting since the big subgraph
captures abstract global patterns instead of local patterns.

E. Time Complexity Study

To study the efficiency of ISONN and ISONN-fast, we
collect the actual running time on the training model, which
is shown in Figure 7. In both Figures 7a and 7b 3, the x-

3Since the ADHD-fMRI is a relatively large dataset compared with the
others, its running time is in different scale compared with the other datasets,
which makes the time growth curve of other datasets not obvious. Thus, we
don’t show the results on ADHD-fMRI.

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

axis denotes its value for k& or ¢ and the y-axis denotes
the time cost with different parameters. From Figure 7a,
three lines show the same pattern. When the k increases, the
time cost grows exponentially. This pattern can be directly
explained by the size of the permutation matrix set. When we
increase the kernel size by one, the number of corresponding
permutation matrices grows exponentially. While changing c,
shown in Figure 7b, it is easy to observe that those curves
are basically linear with different slopes. This is also natural
since whenever we add one channel, we only need to add
a constant number of the permutation matrices. To study the
efficiency of ISONN-fast, Figure 7c shows the running times
of ISONN and ISONN-fast on ADHD-fMRI. As it shows,
ISONN-fast uses less time when the kernel size greater than 5,
otherwise ISONN and ISONN will have little difference since
the eigendecomposition has nearly the same time complexity
as calculating all possible node permutations.

F. Case Study on Breaking the Node Order

To study the node order broken by ISONN, we provide a
case study. Here, Figure 8 shows the one kernel and features
obtained by setting the £ = 3,¢ = 4 for one-layer ISONN
on ADHD-fMRI dataset. To better illustrate the idea, we
only use part of the whole brain graph and the window size
is 10 x 10. Figure 8a shows one of four kernels learned
by ISONN under all 6 permutations. From it, we can see
that one kernel template can be presented into 6 different
matrices, which also shows the different node-order results
in different matrix representations. By moving each kernel
matrices on the small window of the original brain graph, we
compute the distances between subgraphs and the kernel under
all permutations as well as maintain the minimal distances
with optimal permutations. Due to the space limit, we only
show four out of six permutations, which are illustrated in
Figure 8b, 8c, 8d, 8e. From Figure 8b-8e, we can see that
the learned features under different permutation of the same
kernel are totally different, which shows different node orders
on small kernels can lead to big differences on the whole
brain graph. Figure 8f shows the features under the optimal
permutation for subgraphs. The colors of the grids on left side
of Figure 8f is almost the same, it indicates the subgraphs
should be the same subgraph, however, in Figure 8b-8e, the
same grids have different colors, showing that the node order
existed in matrices cannot discover the same subgraphs in a
real graph.

V. RELATED WORK

Our work relates to subgraph mining and graph kernel
methods, graph neural networks, network embedding as well
as brain graph analysis.

Subgraph Mining and Graph Kernel Methods: Mining
subgraph features from graph data have been studied for many
years. The aim is to extract useful subgraph features from a set
of graphs by adopting some specific criteria. One classic unsu-
pervised method (i.e., without label information) is gSpan [24],
which built a lexicographic order among graphs and map
each graph to a unique minimum DFS code as its canonical

label. For the supervised model (i.e., with label information),
CORK utilized labels to guide the feature selection, where
the features were generated by gSpan [25]. Due to the mature
development of the sub-graph mining field, subgraph mining
methods have also been adopted in life sciences [26]. On the
other hand, graph kernel methods are also applied to discover
the subgraph structures [14], [15]. Among them, most existing
works focus on the graph with node labels and the kernels need
to be predefined. Yet, in this paper, we are handling the graph
without node labels. Moreover, we can not only compute the
similarity between pairwise graphs but also learn subgraph
templates, which can be further analyzed.

Graph Neural Network and Graph Classification: Graph
Neural Networks [9], [28]-[30] have been studied in recent
years because of the prosperity of deep learning. Traditional
deep models cannot be directly applied to graphs due to
the special data structure. The GCN proposed in [9] utilized
the normalized adjacency matrix to learn the node features
for node classification. However, these existing works based
on graph neural networks all fail to investigate the node-
orderless property of the graph data and to maintain the
explicit structural information. Another important topic related
to this paper is graph classification. Initially, researchers mine
the subgraphs by DFS or BFS [4], [31], and use them as the
features. With the rapid development of deep learning (DL),
many works are done based on DL methods. GAM builds the
model by RNN with self-attention mechanism [32]. DCNN
extend CNN to general graph-structured data by introducing a
‘diffusion-convolution’ operation [28]. Moreover, many works
are proposed based on GNNs, too, where they often add
an additional graph-pooling layer to get the graph represen-
tation [10], [33]-[35]. For example, GIN [10] proposes a
general pooling function that simply takes the sum of the
embeddings of all nodes. SAGPool [35] suggests the nodes
have varying importance towards graph embeddings. However,
these methods still neglect the sturcture naturally since they
are often built with node features.

Brain Graph Analysis: Due to the development of brain-
based graph theory, the brain can be analyzed from the graph
perspective. Jie et al. studied both local connectivity and glocal
topology of fMRI brain graphs by graph kernels [36]. Kong ez
al. proposed a discriminative criterion to select subgraphs [4].
Wang et al. first reordered the graph and used three ways of
the decoder to predict brain-related diseases [12]. One of the
early works applied GCN to predict Autism Spectrum Disorder
and Alzheimer’s disease [2]. InceptionGCN [37] defined a ge-
ometric ’inception modules’ that capture intra- and inter-graph
structural heterogeneity. Li ef al. used mutual information to
improve the performance of GNN [1]. Other works also focus
on the interpretability of brain graphs. GroupINN [3] learned
te node grouping and extract features jointly and the grouped
nodes can provide good interpretability. Yang et al. proposed
an edge-weighted graph attention network to better understand
the roots of the bipolar disorder [38].

VI. CONCLUSION

In this paper, we proposed a novel graph neural network
named ISONN to solve the brain graph classification problem.

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

ISONN consists of two components: (1) isomorphic compo-
nent, where a set of permutation matrices is used to break
the randomness order posed by matrix representation for a
bunch of templates and one min-pooling layer and one softmax
layer are used to get the best isomorphic features, and (2)
classification component, which contains three fully-connected
layers. We further discuss the two efficient variants of ISONN
to accelerate the model. Next, we perform the experiments on
four real-world brain datasets. The experimental results show
the proposed method outperforms all comparison methods,
which demonstrates the superiority of our proposed method.
The experimental analysis on time complexity illustrates the
efficiency of the ISONN-fast.

[1]

[2]

[3]

[4]

[6]

[7]

[8]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

REFERENCES

X. Li, N. C. Dvornek, J. Zhuang, P. Ventola, and J. Duncana, “Graph
embedding using infomax for asd classification and brain functional
difference detection,” arXiv preprint arXiv:1908.04769, 2019.

S. Parisot, S. I. Ktena, E. Ferrante, M. Lee, R. Guerrero, B. Glocker, and
D. Rueckert, “Disease prediction using graph convolutional networks:
application to autism spectrum disorder and alzheimer’s disease,” Med-
ical image analysis, vol. 48, pp. 117-130, 2018.

Y. Yan, J. Zhu, M. Duda, E. Solarz, C. Sripada, and D. Koutra,
“Groupinn: Grouping-based interpretable neural network for classifi-
cation of limited, noisy brain data,” in Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2019, pp. 772-782.

X. Kong, P. S. Yu, X. Wang, and A. B. Ragin, “Discriminative feature
selection for uncertain graph classification,” in Proceedings of the 2013
SIAM International Conference on Data Mining. SIAM, 2013, pp.
82-93.

X. Kong and P. S. Yu, “Semi-supervised feature selection for graph
classification,” in Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2010, pp.
793-802.

N. Jin, C. Young, and W. Wang, “Graph classification based on pattern
co-occurrence,” in Proceedings of the 18th ACM conference on Infor-
mation and knowledge management. ACM, 2009, pp. 573-582.

J. Wu, S. Pan, X. Zhu, and Z. Cai, “Boosting for multi-graph classifi-
cation,” IEEE transactions on cybernetics, vol. 45, no. 3, pp. 416-429,
2014.

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in Proceedings of the
34th International Conference on Machine Learning-Volume 70. JMLR.
org, 2017, pp. 1263-1272.

T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” arXiv preprint arXiv:1810.00826, 2018.

W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Advances in Neural Information Processing
Systems, 2017, pp. 1024-1034.

S. Wang, L. He, B. Cao, C.-T. Lu, P. S. Yu, and A. B. Ragin, “Structural
deep brain network mining,” in Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
ACM, 2017, pp. 475-484.

A. Narayanan, M. Chandramohan, R. Venkatesan, L. Chen, Y. Liu, and
S. Jaiswal, “graph2vec: Learning distributed representations of graphs,”
arXiv preprint arXiv:1707.05005, 2017.

B. Gaiizere, L. Brun, and D. Villemin, “Two new graphs kernels in
chemoinformatics,” Pattern Recognition Letters, vol. 33, no. 15, pp.
2038-2047, 2012.

N. Shervashidze, P. Schweitzer, E. J. v. Leeuwen, K. Mehlhorn, and
K. M. Borgwardt, “Weisfeiler-lehman graph kernels,” Journal of Ma-
chine Learning Research, vol. 12, no. Sep, pp. 2539-2561, 2011.

A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2016,
pp. 855-864.

Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu, “Learning entity and relation
embeddings for knowledge graph completion,” in Twenty-ninth AAAI
conference on artificial intelligence, 2015.

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

[33]

[34]

[35]

[36]

(37]

[38]

Y.-A. Lai, C.-C. Hsu, W. H. Chen, M.-Y. Yeh, and S.-D. Lin, “Prune:
Preserving proximity and global ranking for network embedding,” in
Advances in neural information processing systems, 2017, pp. 5257-
5266.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770-778.

B. Cao, X. Kong, J. Zhang, S. Y. Philip, and A. B. Ragin, “Identifying
hiv-induced subgraph patterns in brain networks with side information,”
Brain informatics, vol. 2, no. 4, pp. 211-223, 2015.

B. Cao, L. Zhan, X. Kong, S. Y. Philip, N. Vizueta, L. L. Altshuler, and
A. D. Leow, “Identification of discriminative subgraph patterns in fmri
brain networks in bipolar affective disorder,” in International Conference
on Brain Informatics and Health. Springer, 2015, pp. 105-114.

P. Vincent, H. Larochelle, 1. Lajoie, Y. Bengio, and P-A. Manzagol,
“Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion,” Journal of machine
learning research, vol. 11, no. Dec, pp. 3371-3408, 2010.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097-1105.

X. Yan and J. Han, “gspan: Graph-based substructure pattern mining,”
in 2002 IEEE International Conference on Data Mining, 2002. Proceed-
ings. 1EEE, 2002, pp. 721-724.

M. Thoma, H. Cheng, A. Gretton, J. Han, H.-P. Kriegel, A. Smola,
L. Song, P. S. Yu, X. Yan, and K. Borgwardt, “Near-optimal supervised
feature selection among frequent subgraphs,” in Proceedings of the 2009
SIAM International Conference on Data Mining. SIAM, 2009, pp.
1076-1087.

A. Mrzic, P. Meysman, W. Bittremieux, P. Moris, B. Cule, B. Goethals,
and K. Laukens, “Grasping frequent subgraph mining for bioinformatics
applications,” BioData mining, vol. 11, no. 1, p. 20, 2018.

F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and M. M.
Bronstein, “Geometric deep learning on graphs and manifolds using
mixture model cnns,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017, pp. 5115-5124.

J. Atwood and D. Towsley, “Diffusion-convolutional neural networks,”
in Advances in Neural Information Processing Systems, 2016, pp. 1993—
2001.

J. Masci, D. Boscaini, M. Bronstein, and P. Vandergheynst, “Geodesic
convolutional neural networks on riemannian manifolds,” in Proceedings
of the IEEE international conference on computer vision workshops,
2015, pp. 37-45.

P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zam-
baldi, M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner
et al., “Relational inductive biases, deep learning, and graph networks,”
arXiv preprint arXiv:1806.01261, 2018.

H. Saigo, S. Nowozin, T. Kadowaki, T. Kudo, and K. Tsuda, “gboost: a
mathematical programming approach to graph classification and regres-
sion,” Machine Learning, vol. 75, no. 1, pp. 69-89, 2009.

J. B. Lee, R. Rossi, and X. Kong, “Graph classification using structural
attention,” in Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. ACM, 2018,
pp. 1666-1674.

F. M. Bianchi, D. Grattarola, and C. Alippi, “Spectral clustering with
graph neural networks for graph pooling,” in International conference
on machine learning. PMLR, 2020, pp. 874-883.

H. Yuan and S. Ji, “Structpool: Structured graph pooling via conditional
random fields,” in Proceedings of the 8th International Conference on
Learning Representations, 2020.

J. Lee, I. Lee, and J. Kang, “Self-attention graph pooling,” in Interna-
tional conference on machine learning. PMLR, 2019, pp. 3734-3743.
B. Jie, D. Zhang, W. Gao, Q. Wang, C.-Y. Wee, and D. Shen, “Integration
of network topological and connectivity properties for neuroimaging
classification,” IEEE transactions on biomedical engineering, vol. 61,
no. 2, pp. 576-589, 2013.

A. Kazi, S. Shekarforoush, S. A. Krishna, H. Burwinkel, G. Vivar,
K. Kortiim, S.-A. Ahmadi, S. Albarqouni, and N. Navab, “Inceptiongcn:
receptive field aware graph convolutional network for disease predic-
tion,” in International Conference on Information Processing in Medical
Imaging. Springer, 2019, pp. 73-85.

H. Yang, X. Li, Y. Wu, S. Li, S. Lu, J. S. Duncan, J. C. Gee, and
S. Gu, “Interpretable multimodality embedding of cerebral cortex using
attention graph network for identifying bipolar disorder,” in International
Conference on Medical Image Computing and Computer-Assisted Inter-
vention. Springer, 2019, pp. 799-807.

