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Abstract. Recently, many fraud detection models introduced graph neural net-
works (GNNs) to improve the model performance. However, fraudsters often dis-
guise themselves by camouflaging their features or relations. Due to the aggre-
gation nature of GNNs, information from both input features and graph structure
will be compressed for representation learning simultaneously. On the one hand,
since not all neighbors provide useful information due to camouflage, aggregat-
ing information from all neighbors may potentially decrease the model perfor-
mance. On the other hand, the structure including all neighbors is not reliable
due to the relation camouflage. In this paper, we propose to decouple attribute
learning and structure learning to avoid the mutual influence of feature and rela-
tion camouflage. Therefore, the model first learns its embedding seperately and
then combine them together with label-guided contrastive losses to make predic-
tions better. We conduct extensive experiments on two real-world datasets, and
the results show the effectiveness of the proposed model.
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1 Introduction

Fraud detection is an important task in our daily life to fight against malicious actions
or intentions. Fraudulent activities exist in many scenarios. For example, opinion fraud
in online review platforms affects the behavior of customers [2], fake news in social
media [1] misleads the opinion of people, and financial fraud in financial platforms can
cause severe financial loss to customers [10, 17]. In these applications, the extensive
interactions among people in both the online and offline world enable researchers to
solve the problem from the graph perspective by treating all people as nodes and in-
teractions as edges. Due to the superior representation power of graph neural networks
(GNNs), GNN-based fraud detection has drawn extensive attention in both industry and
academia [12, 11, 2]. Generally, GNNs aggregate all the information from the neighbor-
hood and then update the information for the center node with it via a linear transforma-
tion [7, 21, 26]. Meanwhile, fraudsters camouflage themselves to avoid being detected
by the fraud detection systems [5]. Typically, the camouflage behaviors of fraudsters
can be categorized into attribute camouflage and relation camouflage. Attribute cam-
ouflage [2] refers to fraudsters fabricating their attributes like regular customers, while
relation camouflage [2] indicates the relations that misguide the classifier.
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Fig. 1: Example of Introducing Noise When
Applying A Two-layer GNN to Fraud De-
tection. In u1-u2-u4, u4 provides essential
information for u1, but it receives noise
from u2 unavoidably due to camouflage su-
perposition. In u1-u3-u7 and u1-u2-u5, u1
receives the noisy information from u2, u5
and u7 due to camouflage on the first or
second layer. Aggregated messages mislead
GNN, making it predict wrong labels.

The effectiveness of GNNs mainly
comes from propagating information
from a “homophily” neighborhood, which
means the central nodes rely on in-
formation propagated from neighboring
nodes in the same class. However, when
dealing with fraud detection, the cam-
ouflage phenomenon violates the as-
sumption since camouflage in GNNs
produces noisy information propagated
from nodes with different labels [2, 12].
Furthermore, attribute and connection
are entangled during GNN propagation,
making attribute learning and structure
learning affect each other, which may
exaggerate false information. The influ-
ence of connection camouflage can be il-
lustrated by Fig. 1. Therefore, applying
GNNs to fraud detection is challenging
from three perspectives: (1) feature cam-
ouflage makes nodes with similar fea-
tures have different labels; (2) connections camouflage leads GNN to aggregate noise
information. More noisy information will be learned if with multiple GNN layers; and
(3) both types of camouflage are mixed during the propagation at each layer, which
further damages the performance of GNN.

To address these aforementioned challenges posed by applying GNNs to fraud de-
tection, we propose a framework that decouples attribute learning and structure learn-
ing, named DC-GNN (Decoupled Contrastive Graph Neural Network). To accomplish
it, it contains three modules: (1) individual attribute encoding, which encodes four at-
tributes together and then uses a graph transformer to identify useful neighbors that re-
veal characteristcs of fraudsters; (2) local structure encoding, which learns the structure
feature that well identifies fraudsters; and (3) label-guided contrastive losses enhanced
optimization, which contrasts the embeddings of fraudulent nodes and benign nodes so
that the model learns more robust node embeddings.

In this paper, we detect fraudsters in multi-relational graphs. Existing models for
multi-relational graphs mainly use the node embeddings learned by GNNs where they
filter out camouflaged relations and then aggragate node features from “homophily”
neighborhood [2, 12]. However, camouflaged relations can also reveal characteristics of
fraudsters [16]. Thus, we use adjacency matrices to learn the structure characteristics
of fraudster so that node features are not required during structure learning. The main
contributions are summarized below:

– We propose a novel framework that learns attribute and structure embeddings sep-
arately to overcome the mutual effects brought by camouflage in GNNs for fraud
detection.
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– We propose a label-guided contrastive loss to enhance optimization, which im-
proves the robustness of the model by contrasting fraudsters and benign nodes.

– We conduct extensive experiments on two real-world datasets, and the performance
shows the effectiveness of the proposed model.

2 Notations and Problem Definition

Notations Generally, scalars are denoted as lowercase letters (e.g., x), the lowercase
bold faced letters (e.g., x) represent vectors, and capital bold faced letters (e.g., X) to
represent matrices. Sets or tensors are denoted as calligraphic letters (e.g., X ). X(i, :)
and X(:, j) denotes ith row and jth column of X, respectively. X(i, j) denotes the
element in ith row and jth column of X. ‖ · ‖F represents matrix F-norm. ∪ and �
represent concatenation and vector inner product, respectively.

Definition 1 (Multi-relational Graph). A multi-relation graph can be represented as
G = (V, {Er}|Rr=1,X ), where V = {v1, . . . , vn} denotes the node set,X = {x1, . . . ,xn}
represents a set of all node features. Each node vi is associated with a d-dimensional
feature vector xi ∈ Rd An edge eij = (vi, vj , r) ∈ Er if vi and vj is connected via
relation r ∈ {1, . . . , R}. A label set Y denotes a node label set.

In this paper, we relax the definition of terminology about “hop”, which denotes the
nodes within certain distance measures.

Definition 2 (K-hop Neighbors) Suppose the distance between node vi to vj is dij .
K-hop neighbors of node vi are a set of nodes that dij ≤ K holds. Given a node vi ∈ V
in the graph, we use N (K)

i to denote K-hop neighbors.

Problem Definition. Given a multi-relational graph G = (V, {Er}|Rr=1,X ) and the
corresponding label set Y for all nodes (accounts or reviews) in V , we model the fraud
detection problem as a binary classification task. Formally, our goal is to find a function
f(·), s.t.

f(G)→ Y.

where Y = {0, 1}n1 , and yi = 1 if vi is fraudulent while yi = 0 if vi is benign.

3 Proposed Method

To alleviate the effects of camouflage, we decouple the GNN learning process into
individual attribute encoding and multi-relational local structure encoding; after that,
we fuse attribute embedding and structure embedding as the final node representation.
To better assist the learning process, we propose two label-guided contrastive losses.
The overall framework is shown in Fig. 2.
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Fig. 2: DC-GNN Architecture. (Module (a): individual attribute encoding with a graph
transformer; module (b): multi-relational local structure encoding with multi-relational
IsoNN including multi-relational graph isomorphic layer, min-pooling layer, feature
normalization (norm), and relational fusion; L: the final loss, which includes Lce for
label prediction, Lac and Lsc for attribute and structure contrastive losses, respectively.)

3.1 Individual Attribute Encoding

Node Attributes Since fraudulent nodes often camouflage themselves on node fea-
tures, we propose to add three more graph related attributes to determine if a node is
fraudulent or not. Since nodes are in a multi-relational graph, we choose connected rela-
tion types, distances towards the central node, and degrees under each relational graph.
The reasons why we choose them as additional attributes are: (1) fraudsters are often
involved in many social activities since they want to make profits. For example, in on-
line review graphs, fraudsters often write an untruthful review for many items for better
promotion. Therefore, fraudsters would connect to many users who also write reviews
for those items; (2) additionally, many fraudsters are also involved in different types of
activities, which potentially reveals the activity type of fraudsters, such as writing fake
reviews or posting fake reviews at the same time; (3) moreover, the distances towards
the given node show the influence of nodes towards the given node.

Formally, given a multi-relational graph G = (V, {Er}|Rr=1,X ), for a node vi, we
encode the corresponding node feature xi as follows

x
(a)
i = MLP(xi) ∈ Rdh×1.

Since we are dealing with multi-relations, we use a vector ri ∈ {0, 1}R, where ri(j) =
1 indicates the node has a j-th relation type connection. One MLP layer is adopted to
get the embedding of the relation vector.

x
(r)
i = MLP (ri) ∈ Rdh×1.

We use the postional embedding proposed in [20] to encode the distance P (vi) of vi to
a node (i.e., the distance is decided by the shortest distance between vi to the central
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node in this paper)

x
(d)
i = Pos-emb(P(vi))

=

[
sin

(
P(vi)

10000
2l
dh

)
, cos

(
P(vi)

10000
2l+1
dh

)]⌊ dh
2

⌋
l=0

,

where x
(d)
i ∈ Rdh×1. The index l iterates throughout all the entries in the above vector

to compute the entry values with sin(·) and cos(·) functions for the node based on its
distance. For degree di, since its number could be extremely large, we first normalize it
and use MLP to obtain the information of it.

x
(e)
i = MLP

(
di∑R

r=1 ‖Er‖

)
∈ Rdh×1.

By adding four attributes together, we obtain the initial node embeddings for all nodes.

x′i = x
(a)
i + x

(r)
i + x

(d)
i + x

(e)
i .

Attribute Encoding with Graph Transformer Due to the great representation power
of transformer [20], we use it as our attribute encoder. In graphs, we regard the context
of a node as its neighborhood. Therefore, we choose K-hop neighbors directly as the
context of the given node.

For each node, we obtain its K-hop neighbors by preprocessing the graph data.
Suppose we have the K-hop neighbor set N (K)

i for vi, the corresponding input feature
matrix Xi ∈ R(|N (K)

i |+1)×h and Xi = [x′i,x
′
i,1, · · · ,x′i,|N (K)

i |
]. We set H(0)

i = Xi

and feed it into the L-layer transformer:

H
(l)
i = Transformer

(
H

(l−1)
i

)
= Softmax

(
QK>√
dh

)
V

,where


Q = H

(l−1)
i W

(l)
Q

K = H
(l−1)
i W

(l)
K

V = H
(l−1)
i W

(l)
V

where H
(L)
i ∈ R(|N (K)

i |+1)×dh , and W
(l)
Q ,W

(l)
K ,W

(l)
V ∈ Rdh×dh . Therefore, we get

the embeddings of H(L)
i = [h

(L)
i ,h

(L)
i,1 , · · · ,h

(L)

i,|N (K)
i |

]. Note that due to the feature

camouflage, we take the h
(L)
i directly as the final attribute embedding h

(f)
i of node vi

to avoid incorporating embeddings from the benign class.

3.2 Multi-relational Local Structure Encoding

Relations between nodes also reveal important information for detecting fraudsters. As
indicated in previous works [16], fraudsters often act collectively, which also means the
fraudsters may share similar local structures. However, traditional GNN cannot learn
good structural information since fraudsters often hide themselves in connections with
benign nodes, which introduce features belongs to benign nodes. To better learn the
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local structural features, we propose to encode the adjacency matrix solely. Thus, we
utilize isomorphic graph neural network [14]. However, IsoNN originally is used for
homogeneous graph classification, we extend it to multi-relational graphs to capture the
local structure embeddings for each node.

Local Adjacency Matrices Reconstruction. We need to reconstruct the local adja-
cency matrices for all nodes and then each node learns its local structure representation.
However, reconstructing the local adjacency matrices with its K-hop neighborhood
is not realistic, since it may involve several nodes, causing high computational costs.
Therefore, we select useful nodes from K-hop neighbors. Nodes are selected based on
the similarities between embeddings in the output of transformer H

(L)
i of the given

node and its neighbors. Here, we calculate the similarity as follows:

sij = sim(hi,hi,j) ∀vj ∈ N (K)
i

Here, Euclidean distance is the similarity measurement. We select Top-t similar nodes
{vj , · · · , vk} and itself vi to reconstruct local adjacency matrix. Note that for the rest of
the paper, we treat {vj , · · · , vk} together with central node vi as selected t nodes just
for simplicity.

With the multi-relational graph G = (V, {Er}|Rr=1,X ), and the selected nodes
{vi, vj , · · · , vk}, we reconstruct local adjacency matrices for all relations, which is de-
noted as Ai = {Ai,r ∈ {0, 1}t×t|1 ≤ r ≤ R}, and the local adjacency matrix Ai,r of
node vi in r-th relation is as follows

Ai,r(p, q) =

{
1, epq ∈ Er,
0, otherwise.

Note that the order of nodes will not affect the embedding results much since IsoNN
can alleviate the node order constraint posed by the adjacency matrix.

Structure Encoding with Multi-relational IsoNN Graph isomorphic layer in IsoNN
adopts learnable kernel variable K ∈ Rm×m to learn the regional structure information.
Here, to incorporate with multi-relational graph, we propose a multi-relational Graph
Isomorphic Layer. we use relational kernels {K1, . . . ,KR}, where Kr ∈ Rm×m is for
rth relation. We can have multiple channels, so the learnable kernel for relation r is
denoted as Kr ∈ Rc×m×m. Then features can be learned by

Fi,r(l, j, s, h) = ‖PjKr(l, :, :)P>j −Ai,r(s : s+m,h : h+m)‖F

where Pj ∈ {0, 1}m×m is a permutation matrix from permutation set {P1, · · · ,Pm!}.
Fi,r ∈ Rc×m!×(t−m+1)×(t−m+1) because Ai,r generates (t −m + 1) × (t −m + 1)
sub-matrices in total. After computing all possible permutations, we need to find the
features made by the optimal permutation. Therefore, a min-pooling layer is adopted
on dimension caused by permutation matrices to find the minimal value computed by
optimal permutation

F̄i,r(l, s, h) = min-pooling (Fi,r(l, :, s, h)) ,
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where F̄i,r ∈ Rc×(t−m+1)×(t−m+1). To reduce the number of parameters, we adopt an
average pooling layer for F̄i,r among all channels.

F̂i,r(s, h) =

∑c
l=1 F̄i,r(l, s, h)

c
,

where F̂i,r ∈ R(t−m+1)×(t−m+1). Since values of the learned features can vary within
a large range, we normalize those learned features. Moreover, differentiating which re-
gion contributes more can build better structural features. We reshape {F̂i,1, . . . , F̂i,R}
into vectors and concatenate them as F̂i ∈ RR×(t−m+1)2 , then normalize it by

Fi(r, s) = 1− exp(F̂i(r, s))∑
j exp(F̂i(r, j))

.

Here, we use ‘1’ for subtraction because the smaller values show better matching be-
tween templates and subgraphs. Therefore, the local structure embedding h

(s)
i is

h
(s)
i = ReLU

(
MLP

(
R⋃
r=1

Fi(r, :)

))
.

where h
(s)
i ∈ Rdh . The time cost for learning isomorphic features is O(cm!m3R(t −

m+ 1)2), where (t−m+ 1)2 is the number of submatrices, m3 corresponds to matrix
multiplication time cost, m! is introduced in enumerating permutation matrices. Thus,
by choosing small kernel size (smallm) and few nodes (small t), the training is feasible.

3.3 Label-guided Contrastive Loss enhanced Optimization

Label prediction. To predict node labels, we concatenate attribute embedding and
structure embedding together as the final node embedding. Formally, the prediction for
node vi can be made by

ŷi = MLP
(

ReLU
(

MLP(h
(f)
i ∪ h

(s)
i )
))

.

The loss function for label prediction is weighted cross entropy.

Lce = −
∑
i∈B

(γyi log (ŷi) + (1− yi) log(ŷi)) ,

where γ is the imbalance ratio of fraud labels (yi = 1) to benign labels (yi = 0), B is
the training batch.

Label-guided Contrastive Loss. To better assist the optimization, we introduce two
label-guided contrastive losses to provide extra guidance on learning node embeddings.
As aforementioned, we separate the attribute and the structure since they would affect
each other, which might make fraudsters harder to be discovered. Therefore, we contrast
the attribute embedding and structure embedding separately. We set that positive pairs
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are those with the same labels and negative pairs are those with different labels based
on the training set. Here, we define the attribute label-guided contrastive loss as:

Lac = − log
exp
(
f
(
h

(f)
i ,h

(f)

i+

)
/τ
)

exp
(
f
(
h

(f)
i ,h

(f)

i+

)
/τ
)
+
∑

i−∈C exp
(
f
(
h

(f)
i ,h

(f)

i−

)
/τ
) ,

where i+ means node vi+ has yi+ = yi, i− means node vi− has yi− 6= yi, C is set
containing negative instances, and τ is temperature. To get the negative instance set, we
randomly select b nodes with different labels from the training set. Similarly, we can
get Lsc with structure embedding. We formulate the objective function of DC-GNN as:

L = Lce + λ1 ∗ Lac + λ2 ∗ Lsc

where λ1 and λ2 control the weight of Lac and Lsc, respectively. The training goal is
to minimize L and the parameters are updated by backpropagation.

4 Experiments

4.1 Experimental Settings

Table 1: Dataset Statistics

# Nodes
(Frauds%)

Relations

Y
el

p 45,954
(14.5%)

R-U-R
(49,315)

R-T-R
(573,616)

R-S-R
(3,402,743)

A
M

Z 11,944
(9.5%)

U-P-U
(175, 608)

U-S-U
(3,566,479)

U-V-U
(1,036,737)

To validate the effectiveness of the
proposed model, we use two real-
world datasets – Yelp [16] and Ama-
zon (AMZ) [13]. Yelp includes ho-
tel and restaurant reviews filtered
(spam) and recommended (legitimate)
on Yelp platform. Amazon includes
product reviews under the Musical In-
struments category. The number of
edges belonging to each relation is
shown in Table 1. More information
can be found at [2].

Comparison Methods and Evaluation Metrics Our baselines include GNN models
and GNN-based fraud detection models. RGCN [18], GraphSAGE [4] are two gen-
eral GNN models. For GNN-based models, we add FdGars [24] which is based on
GCN, GraphConsis [12] which aggregates selected neighbors by similarity, DCI [25]
which decouples representation learning and classification to enhance the performance,
CARE-GNN [2] that uses a reinforcement learning module for neighborhood selection,
FRAUDRE [30] which considers four types of inconsistencies in fraud detection.

Fraud detection suffers severe class imbalance. Therefore, AUC and average preci-
sion (AP) are our evaluation metrics.

Experimental setups We partition the datasets into training, validation, and test data.
We choose p ∈ {60%, 80%} of a dataset to train the model, and use 20% of the remain-
ing data as the validation set. The rest is test data. We set the embedding size dh = 64
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Table 2: Fraudulent nodes similarity between its neighborhood. (FeatSim denotes fea-
ture similarity and LabelSim denotes label similarity. 2-hop via F/B means the 2-hop
neighborhood retrieved via fraudulent nodes/benign nodes.)

datasets Relation
FeatSim
(1-hop)

LabelSim
(1-hop)

FeatSim
(2-hop via F)

LabelSim
(2-hop via F)

FeatSim
(2-hop via B)

LabelSim
(2-hop via B)

Yelp

R-U-R 0.9906 0.9089 0.9955 0.9817 0.9940 0.5306
R-T-R 0.9880 0.1764 0.9882 0.1989 0.9882 0.1932
R-S-R 0.9878 0.1857 0.9879 0.1914 0.9879 0.1910
ALL 0.9878 0.1838 0.9878 0.1737 0.9876 0.0955

Amazon

U-P-U 0.7107 0.1673 0.7069 0.1687 0.6121 0.0751
U-S-U 0.6866 0.0558 0.6287 0.0638 0.6254 0.0499
U-V-U 0.6969 0.0532 0.6239 0.0388 0.6153 0.0308
ALL 0.6866 0.0722 0.6169 0.0684 0.6331 0.0528

for all comparison methods and set the same random seed to make a fair comparison.
Parameters for graph transformer include layer number L = 2, and the number of heads
= 8. In the individual attribute encoding, we setK = 2, but |N (2)

i | is not a fixed number
for all nodes. Therefore, we select the same number of neighbors from N (2)

i to make it
easy to train. We set the number of neighborhoods to 201 for Amazon and 61 for Yelp.
For structure encoding, we only use 1 multi-relational graph isomorphic layer for sim-
plicity. We set t = 5, the kernel size m = 2 and channel number c = 10 for Amazon,
and t = 20, m = 3 and c = 10 for Yelp. In contrastive loss, τ = 0.001, b = 15, and
λ1 = 0.001 and λ2 = 0. for Amazon, and τ = 0.001, b = 5, λ1 = 0 and λ2 = 0.001
for Yelp. The learning rate is 0.001 and 4096 is batch size. Adam optimizer is utilized.

For the baselines’ implementation, we follow the setting reported in their papers.
We use the codes of DG-Fraud 3 for GraphSAGE, FdGars and GraphConsis, and codes
published by the authors for RGCN, CARE-GNN, DCI, FRAUDRE. For DC-GNN, we
pre-train the individual attribute encoding module to get the ranking of the neighbhor-
hood so that we can reconstruct the adjacency matrices before training DC-GNN. All
experiments are run on 256GB Linux server.

4.2 Camouflage Evidence in 2-hop Neighborhood

We use the same equation in [2] to calculate similarity scores. Table 2 shows the fea-
ture and label similarity scores among 1-hop and 2-hop neighborhood. According to the
similarity scores of 1-hop neighbors, we observe that label similarity is as low as 0.1838
for Yelp and 0.0722 for Amazon, which indicates that fraudsters connect many benign
nodes in both datasets, showing that connection camouflage is severe in almost all re-
lations (except R-U-R in Yelp). Additionally, under such a low label similarity score,
the feature similarity score is as high as 0.9878 for Yelp and 0.6866 for Amazon, which
shows feature camouflage exists since fraudsters connect benign nodes sharing similar
features. To have a better understanding of how camouflage affects the GNNs in 2-hop
neighborhood. We have two scenarios: if the intermediate node is fraudulent (Via F) or
benign (Via B). If the intermediate node is fraudulent, then both feature camouflage and

3 https://github.com/safe-graph/DGFraud-TF2
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Table 3: Classification Results. (The best scores are bold, the second best is underlined.)

Dataset Metric
Training

Percentage
RGCN

Graph-
SAGE

FdGars
Graph-
Consis

DCI
CARE-
GNN

FRAU-
DRE

DC-GNN

Yelp
AUC

60% 61.18 54.31 48.22 85.55 63.41 78.86 86.08 88.13
80% 61.66 51.79 46.82 86.60 63.45 78.34 86.25 88.18

AP
60% 23.46 17.32 14.59 54.18 21.07 42.17 55.85 58.82
80% 24.33 14.87 14.19 56.10 17.53 41.73 57.00 58.94

Amazon
AUC

60% 18.84 73.78 40.75 89.37 88.52 92.66 93.15 94.87
80% 18.97 75.88 41.48 90.52 86.04 93.02 94.23 95.43

AP
60% 37.86 24.52 7.94 81.04 53.63 82.69 84.37 86.95
80% 41.51 28.39 9.30 81.80 38.08 83.80 85.47 87.56

connection camouflage are still severe as the scores are similar to those of 1-hop. If the
intermediate node is benign, two scores heavily drop compared with scores of 1-hop.
This shows the information transmitted through benign nodes brings much misleading
information, which further degrades the performance of traditional GNN models.

4.3 Overall Performance

The overall performance is shown in Table 3. RGCN and GraphSAGE and FdGars, are
general graph neural networks and perform badly on both datasets. The main reason is
traditional GNNs cannot handle the noises introduced by camouflage, especially when
severe camouflage that exists in both datasets as illustrated in subsection 4.2. Among
them, FdGars gets the worst performance since it cannot deal with multi-relations and is
unable to filter out any noise brought by camouflage. DCI performs better in AUC met-
ric than traditional GNN since it decouples the end-to-end classification into representa-
tion learning and classification, and the self-supervised graph learning in DCI captures
the relatively comprehensive information about fraudsters. Moreover, when the number
of training data increases, DCI’s performance decreases, too. It shows the decoupling
strategy of DCI is unable to learn well when facing more instances with camouflage.
GraphConsis, CARE-GNN, and FRAUDRE have relatively good performances among
all methods. FRADURE has the best performance among them since it considers four
types of inconsistencies caused by camouflage and propagates additional inconsistency
features. However, the noise brought by dissimilar neighbors is unable to remove. Com-
pared with FRAUDRE, CARE-GNN is worse on two datasets. Especially on Yelp, AUC
and AP are much lower. CARE-GNN selects nodes at each layer, which shows that the
selection can filter out some neighbors connected by camouflaged edges successfully.
However, the aggregation is based on node features. Thus, for Amazon, whose features
provide more information than structures, it works well. but for Yelp, whose features
do not provide much information (see discussion in subsection 4.5), it cannot work
well. With more training data, its performance on Yelp is even worse. GraphConsis has
better performance than CARE-GNN, but worse than FRAUDRE, since it can select
k-hop neighbors and filter out most of the neighbors who do not share the same class
with the central node. More training data brings better performance. DC-GNN outper-
forms all methods. For Yelp, it has around 2%, 2% improvement over the second-best
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scores in AUC and AP, respectively. For Amazon, DC-GNN has about 1.5% and 2%
improvement than the second best scores in AUC and AP, respectively. It means such a
decoupled learning process can minimize the mutual influence between feature camou-
flage and relation camouflage and learn useful local structure information as much as
possible. Overall, the performance shows the effectiveness of DC-GNN.

4.4 Discussion on Reconstructed Matrices

Table 4: Study on Selected Nodes of Yelp.

#Selected
Nodes AUC AP Distance LabelSim

5 84.41 47.33 1.1311 0.2111

10 85.69 52.32 1.1955 0.2033

15 86.57 54.54 1.2197 0.2026

20 88.13 58.82 1.2306 0.2008

To better understand how the node selec-
tion works, we show the average recon-
structed local adjacency matrices with
20 selected nodes on Yelp in Fig. 3.
Specifically, Fig. 3a-3c show the recon-
structed matrices for fraudulent nodes,
while Fig. 3d-3f show reconstructed ma-
trices for benign nodes. All reconstructed
local adjacency matrices of fraudsters
have clear different patterns from those
for benign nodes. It illustrates the recon-
structed matrices are able to give char-
acteristics of fraudulent nodes. Further-
more, we show the distance and label
similarity of selected nodes to central nodes in Table 4. Distance is bigger than 1, which
shows selected nodes contain 2-hop neighbors. By selecting 2-hop neighbors, DC-GNN
can reach more nodes and obtain richer information. The label similarity is low, which
means the most of the selected neighbors are benign nodes. Thus, the reconstructed
adjacency matrices are made of camouflaged edges, edges between benign nodes, and
edges between fraudulent nodes. The camouflaged edges provide the links to benign
nodes, while edges between benign nodes reveal the "community" that the fraudsters
want to cheat. Therefore, the performance increases with the number of selected nodes
increases. DC-GNN achieves the best performance with 20 nodes.

4.5 Ablation Study

To study the effectiveness of each module, we also conduct an ablation study with 60%
training data. Fig. 4 shows the results. We first show how attribute and structure mod-
ules contribute seperately. Then, we add contrastive loss (CL) to attribute encoding and
structure encoding separately and collectively. As illustrated in Fig. 4a, single attribute
embedding or structure embedding cannot provide enough information to detect fraud-
sters in Amazon. By combining two modules, the performance gets a huge improve-
ment. Interestingly, CL can better assist attributes than structure. It means attributes
of fraudulent nodes are different from those of benign nodes. Meanwhile, structures
of fraudulent nodes are extremely hard to distinguish from benign nodes, even getting
worse performance with CL. As shown in Fig. 4b, combined embedding with CL is
also the best performer on Yelp. However, different from Amazon, attribute embedding
with CL gets much worse than it without CL, which means the attribute embedding in
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(a) (b) (c)

(d) (e) (f)

Fig. 3: Reconstructed Local Adjcency Matrices of Yelp. (Fig. 3a- 3c for fraudulent
nodes and Fig.3d- 3f for benign nodes.)

Yelp is hard to provide the right guidance under CL. Instead, the structure can provide
useful guidance under CL to improve the model performance.

Number of Neighborhood. Here, we also discuss how the number of neighbors affects
performance. As illustrated in Fig. 5, in both datasets, the difference is not much when
choosing different numbers of neighbors for the individual attribute encoding mod-
ule. Even for Amazon, DC-GNN has relatively high performance with 40 neighbors.
Therefore, we can use a small-sized "context" to train the individual attribute encoding
module, which can keep the training time within a reasonable range.

4.6 Parameter Analysis

Parameters Analysis in Contrastive Loss. We have four parameters in contrastive
loss, including the coefficient of attribute contrastive loss λ1, coefficient of structure
contrastive loss λ2, temperature τ , and the number of negative instances b. The overall
results are shown in Fig. 6.

– λ1. We show the results that λ1 ∈ {0.0001, 0.001, 0.01, 0.1} in Fig. 6a and 6e.
For Yelp, the performance has a sudden drop when λ1 = 0.01. Scores of 0.0001
and 0.001 are similar and better than those of 0.1. For Amazon, the performance
remains stable under different λ1.

– λ2. Similar to λ1, we show the results that λ2 ∈ {0.0001, 0.001, 0.01, 0.1} in
Fig. 6b and 6f. Figures show that the performance affected by structure information
has a clear trend. When λ2 decreases, the performance decreases as well. While for
Yelp, the performance increases at λ2 = 0.001 and then decreases, showing the
best value for λ2 is 0.001. For Amazon, the best value is 0.1.
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(a) Amazon (b) Yelp

Fig. 4: Ablation Study

(a) Amazon (b) Yelp

Fig. 5: Number of Neighbhors

– τ . τ is an important parameter in the contrastive loss. we set τ ∈ {1 × 10−6, 1 ×
10−5, 1× 10−4, 1× 10−3, 1× 10−2, 1× 10−1}. From Fig. 6c, we observe a sharp
increase when τ change from 1 × 10−5 to 1 × 10−4, and have a slight increase
afterwards. From Fig. 6g, the performance first goes down at 1 × 10−4 and then
reach a peak at 1×10−3. Therefore, a reasonable τ is curial for model performance.

– b. We choose the b from {5, 10, 15, 20}. As indicated in Fig. 6d and 6h. For Yelp,
the best number is 5. When the number increases, the performance decreases first
and remains steady afterward. For Amazon, when the number increases to 15, the
performance reaches a peak.

5 Related Work

5.1 Graph Neural Networks and Graph Contrastive Learning

Graph Neural Networks (GNNs) [7, 4, 18] bring much easier computation along with
better performance for graph-structured data. Generally, GNNs utilize the message-
passing framework, which first aggregates all the message coming from the connected
neighborhood, and then update the embedding for the central node. Prevailing methods
to capture graph properties are in two granularities, including node [7, 18], subgraph [6,
27, 9]. From a node view, GCN [7], GraphSAGE [4] are some of the earliest works
focusing on node classification. In heterogeneous graphs, many researchers use meta-
path [3, 33] to construct homogeneous graphs, and then apply GNN layers or attention
mechanisms on top of them. From the subgraph view, researchers claim subgraph can
bring finer information on subgraph level [19, 6]. For instance, SubG-Con [6] better
node embeddings by constructing node embeddings with subgraph embeddings. When
using subgraph embeddings, a graph pooling layer like DGCNN [31], DiffPool [28]
SAGPool [8], etc. are added after a GNN layer. These methods learn graph embedding
with the help of node features. Different from them, IsoNN [14] can solely be based on
the graph structure, but it cannot deal with large subgraphs.

Graph contrastive learning is often used in self-supervised learning, which requires
positive samples and negative samples. Many works in literature contrast node embed-
ding with its corresponding graph embedding or subgraph embedding [6, 22], some
contrast subgraph with subgraph [29, 15]. However, in fraud detection, such contrast
cannot be held due to camouflage. The neighborhood of fraudsters is noisy by having
many benign nodes around. Therefore, previous contrast methods cannot be applied to
fraud detection directly.
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(a) λ1 (b) λ2 (c) τ (d) b

(e) λ1 (f) λ2 (g) τ (h) b

Fig. 6: Contrastive Loss Parameter Analysis Two datasets. Fig. 6a-6d shows the perfor-
mance on Yelp, Fig. 6e- 6h performance on Amazon.

5.2 GNN-based Fraud Detection

Recent works have made much progress in applying GNN to fraud detection. FdGars [24]
is the first paper using GCN [7] to detect fraudsters for online app review systems. Since
only a very small portion of data has labels in fraud detection, SemiGNN [23] uti-
lizes both labeled and unlabeled data in the loss function, while Player2Vec [32] con-
struct multi-view networks from abundant information in the heterogeneous graph to
enrich information. On the other hand, fraudsters often disguise themselves, therefore,
some works like GraphConsis [12] and FRAUDRE [30] consider incorporating incon-
sistencies of node features and relations when applying GNN. Some other works [2, 11,
12] choose to filter out neighbors that do not share the same class before aggregation.
CARE-GNN [2] utilizes reinforcement learning to distinguish nodes with camouflaged
behaviors. Besides, some works still claim other issues, like class imbalance in GNN,
incomplete information in the graph, etc. For example, PC-GNN [11] remedies the
class imbalance problem by picking and choosing neighbors to aggregate at each layer.
DCI [25] decouples the representation learning and classification to obtain performance
gain. With many works in fraud detection, but rare papers are about the mutual effects
of node features and graph structure under camouflage.

6 Conclusion

We study the fraud detection in graph setting with camouflage behaviors. Since fea-
ture camouflage and connection camouflage affect each other in traditional GNN learn-
ing. Therefore, we propose DC-GNN that decouples the learning process of traditional
GNNs into attribute learning and structure learning, which adopts a graph transformer
to learn attribute embedding based on four attributes and then select nodes from K-
hop neighbors to reconstruct local adjacency matrices for all nodes. To learn structure
embeddings, DC-GNN utilizes the multi-relational IsoNN. DC-GNN predicts labels by
combining the attribute embedding and structure embedding. It also uses label-guided
contrastive losses to enhance the performance. We conduct extensive experiments on
two real-world datasets, and the results demonstrate the effectiveness of DC-GNN.
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